论文标题
关于基于线性放松的紧密性,基于鲁棒性认证方法
On the tightness of linear relaxation based robustness certification methods
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
There has been a rapid development and interest in adversarial training and defenses in the machine learning community in the recent years. One line of research focuses on improving the performance and efficiency of adversarial robustness certificates for neural networks \cite{gowal:19, wong_zico:18, raghunathan:18, WengTowardsFC:18, wong:scalable:18, singh:convex_barrier:19, Huang_etal:19, single-neuron-relax:20, Zhang2020TowardsSA}. While each providing a certification to lower (or upper) bound the true distortion under adversarial attacks via relaxation, less studied was the tightness of relaxation. In this paper, we analyze a family of linear outer approximation based certificate methods via a meta algorithm, IBP-Lin. The aforementioned works often lack quantitative analysis to answer questions such as how does the performance of the certificate method depend on the network configuration and the choice of approximation parameters. Under our framework, we make a first attempt at answering these questions, which reveals that the tightness of linear approximation based certification can depend heavily on the configuration of the trained networks.