论文标题

使用深度学习在血管内OCT图像中微血管的自动分割

Automated segmentation of microvessels in intravascular OCT images using deep learning

论文作者

Lee, Juhwan, Kim, Justin N., Gomez-Perez, Lia, Gharaibeh, Yazan, Motairek, Issam, Pereira, Ga-briel T. R., Zimin, Vladislav N., Dallan, Luis A. P., Hoori, Ammar, Al-Kindi, Sadeer, Guagliumi, Giulio, Bezerra, Hiram G., Wilson, David L.

论文摘要

为了分析脆弱性的这种特征,我们开发了一种自动化的深度学习方法,用于检测血管内光学相干断层扫描(IVOCT)图像中的微血管。分析了来自85个病变和37个正常段的8,403个IVOCT图像框架。手动注释是使用以前由我们小组开发的专用软件(章鱼)完成的。将极性(R,θ)域中的数据增强应用于原始IVOCT图像,以确保微血管在所有可能的角度出现。预处理方法包括导丝/阴影检测,管腔分割,像素移动和降噪。 DeepLab V3+用于分割微血管候选物。使用浅卷积神经网络将每个候选者的边界盒分类为微血管或非微使电路。为了更好地分类,我们在网络训练期间使用微血管上的边界框上使用了数据增强(即角度旋转)。数据增强和预处理步骤可显着提高微血管分割的性能,得出的方法为0.71 +/- 0.10,Pixel-wise敏感性/特异性为87.7 +/- 6.6%/99.8 +/- 0.1%。从候选人分类的微血管的网络表现出色,灵敏度为99.5 +/- 0.3%,特异性为98.8 +/- 1.0%,精度为99.1 +/- 0.5%。分类步骤消除了大多数残留误报,骰子系数从0.71增加到0.73。此外,我们的方法与手动分析的730相比,产生了698个图像框架,差异为4.4%。与手动方法相比,自动化方法改善了微血管的连续性,这意味着改善了分割性能。该方法将对研究目的以及潜在的未来治疗计划有用。

To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8,403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was done using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,θ) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71+/-0.10 and pixel-wise sensitivity/specificity of 87.7+/-6.6%/99.8+/-0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5+/-0.3%, specificity of 98.8+/-1.0%, and accuracy of 99.1+/-0.5%. The classification step eliminated the majority of residual false positives, and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared to 730 from manual analysis, representing a 4.4% difference. When compared to the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源