论文标题

部分可观测时空混沌系统的无模型预测

Local and global expansion in random geometric graphs

论文作者

Liu, Siqi, Mohanty, Sidhanth, Schramm, Tselil, Yang, Elizabeth

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Consider a random geometric 2-dimensional simplicial complex $X$ sampled as follows: first, sample $n$ vectors $\boldsymbol{u_1},\ldots,\boldsymbol{u_n}$ uniformly at random on $\mathbb{S}^{d-1}$; then, for each triple $i,j,k \in [n]$, add $\{i,j,k\}$ and all of its subsets to $X$ if and only if $\langle{\boldsymbol{u_i},\boldsymbol{u_j}}\rangle \ge τ, \langle{\boldsymbol{u_i},\boldsymbol{u_k}}\rangle \ge τ$, and $\langle \boldsymbol{u_j}, \boldsymbol{u_k}\rangle \ge τ$. We prove that for every $\varepsilon > 0$, there exists a choice of $d = Θ(\log n)$ and $τ= τ(\varepsilon,d)$ so that with high probability, $X$ is a high-dimensional expander of average degree $n^\varepsilon$ in which each $1$-link has spectral gap bounded away from $\frac{1}{2}$. To our knowledge, this is the first demonstration of a natural distribution over $2$-dimensional expanders of arbitrarily small polynomial average degree and spectral link expansion better than $\frac{1}{2}$. All previously known constructions are algebraic. This distribution also furnishes an example of simplicial complexes for which the trickle-down theorem is nearly tight. En route, we prove general bounds on the spectral expansion of random induced subgraphs of arbitrary vertex transitive graphs, which may be of independent interest. For example, one consequence is an almost-sharp bound on the second eigenvalue of random $n$-vertex geometric graphs on $\mathbb{S}^{d-1}$, which was previously unknown for most $n,d$ pairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源