论文标题

IMB-NAS:神经架构搜索不平衡数据集

IMB-NAS: Neural Architecture Search for Imbalanced Datasets

论文作者

Duggal, Rahul, Peng, Shengyun, Zhou, Hao, Chau, Duen Horng

论文摘要

阶级失衡是在现实世界数据分布中发生的无处不在现象。为了克服其对培训准确分类器的有害影响,现有工作遵循三个主要方向:班级重新平衡,信息传输和代表性学习。在本文中,我们提出了一个新的和互补的方向,用于改善长尾数据集的性能 - 通过神经体系结构搜索(NAS)优化骨干架构。我们发现,在平衡数据集上获得的体系结构的准确性并不能表明在不平衡的数据集中的良好性能。这构成了在长时间的数据集上进行完整的NAS运行的需求,该数据集可以迅速变得强化。为了减轻这一计算负担,我们旨在有效地将NAS超级网络从平衡的源数据集适应到目标不平衡的目标。在几种适应策略中,我们发现最有效的方法是重新损失重新损失线性分类头,同时冻结在平衡源数据集中训练的骨干NAS超级网络。我们在多个数据集上执行广泛的实验,并提供具体的见解,以优化长尾数据集的体系结构。

Class imbalance is a ubiquitous phenomenon occurring in real world data distributions. To overcome its detrimental effect on training accurate classifiers, existing work follows three major directions: class re-balancing, information transfer, and representation learning. In this paper, we propose a new and complementary direction for improving performance on long tailed datasets - optimizing the backbone architecture through neural architecture search (NAS). We find that an architecture's accuracy obtained on a balanced dataset is not indicative of good performance on imbalanced ones. This poses the need for a full NAS run on long tailed datasets which can quickly become prohibitively compute intensive. To alleviate this compute burden, we aim to efficiently adapt a NAS super-network from a balanced source dataset to an imbalanced target one. Among several adaptation strategies, we find that the most effective one is to retrain the linear classification head with reweighted loss, while freezing the backbone NAS super-network trained on a balanced source dataset. We perform extensive experiments on multiple datasets and provide concrete insights to optimize architectures for long tailed datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源