论文标题
海洋漂浮的概率模型
A probabilistic model of ocean floats under ice
论文作者
论文摘要
ARGO项目在世界海洋中部署了数千个浮子。这些浮子仅由电流携带,进行测量,例如温度和盐度,深度为两公里。这些测量对于诸如对气候变化,估计温度和盐度场以及跟踪全球水文周期等科学任务至关重要。在南大洋中,Argo经常在冰盖下漂浮,从而防止通过GPS进行跟踪。管理此缺失的位置数据是ARGO项目的重要科学挑战。为了预测冰块在冰下的轨迹并量化其不确定性,我们引入了一种称为Argossm的概率状态空间模型(SSM)。基于所有可用数据,Argossm在每次浮点的位置和速度的后部分布,其中包括GPS测量,冰盖和潜在的涡度。该推论是通过有效的粒子滤波方案来实现的,尽管GPS数据中的信噪比很高,但这是有效的。与海洋学中现有的插值方法相比,Argossm更准确地预测了持有的GPS测量。此外,由于不确定性估计值在后验分布中得到了良好的校准,因此Argossm可实现更稳健,准确的温度,盐度和循环估计。
The Argo project deploys thousands of floats throughout the world's oceans. Carried only by the current, these floats take measurements such as temperature and salinity at depths of up to two kilometers. These measurements are critical for scientific tasks such as modeling climate change, estimating temperature and salinity fields, and tracking the global hydrological cycle. In the Southern Ocean, Argo floats frequently drift under ice cover which prevents tracking via GPS. Managing this missing location data is an important scientific challenge for the Argo project. To predict the floats' trajectories under ice and quantify their uncertainty, we introduce a probabilistic state-space model (SSM) called ArgoSSM. ArgoSSM infers the posterior distribution of a float's position and velocity at each time based on all available data, which includes GPS measurements, ice cover, and potential vorticity. This inference is achieved via an efficient particle filtering scheme, which is effective despite the high signal-to0noise ratio in the GPS data. Compared to existing interpolation approaches in oceanography, ArgoSSM more accurately predicts held-out GPS measurements. Moreover, because uncertainty estimates are well-calibrated in the posterior distribution, ArgoSSM enables more robust and accurate temperature, salinity, and circulation estimates.