论文标题

$ψ$ - 依赖的过程的统计学习

Statistical learning for $ψ$-weakly dependent processes

论文作者

Diop, Mamadou Lamine, Kengne, William

论文摘要

我们考虑了$ψ$ - 依赖依赖的过程的统计学习问题,这些过程统一了大量弱依赖条件,例如混合,关联,$ \ cdots $,建立了经验风险最小化算法的一致性。我们得出概括界限并提供学习率,在某些假设的某些h {Ö}类别上,它接近通常在{\ it I.I.I.D.}情况下获得的常见$ O(n^{ - 1/2})$。在时间序列预测中的应用以外源协变量的因果模型进行了示例。

We consider statistical learning question for $ψ$-weakly dependent processes, that unifies a large class of weak dependence conditions such as mixing, association,$\cdots$ The consistency of the empirical risk minimization algorithm is established. We derive the generalization bounds and provide the learning rate, which, on some H{ö}lder class of hypothesis, is close to the usual $O(n^{-1/2})$ obtained in the {\it i.i.d.} case. Application to time series prediction is carried out with an example of causal models with exogenous covariates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源