论文标题

部分可观测时空混沌系统的无模型预测

The $D^6 R^4$ interaction as a Poincaré series, and a related shifted convolution sum

论文作者

Klinger-Logan, Kim, Miller, Stephen D., Radchenko, Danylo

论文摘要

我们完成了该程序,该程序是在2015年的绿色,米勒和VanHove的论文中启动的,直接构建了字符串理论的自动型解决方案$ d^6 r^4 $ dinaceial方程$(δ-12)f = -e_ {3/2}^2 $ for $ sl(2,\ z)$。该结构是通过庞加莱系列的类型,需要明确评估特定的双重积分。我们还展示了如何使用双迪里奇系列系列来正式得出$ f $ f $傅立叶扩展中出现的一种类型的术语的预测消失,这证实了切斯特,格林,普富,王,王以及杨 - 米尔斯理论激励的猜想(后来又是由fedosova,klinger-logan and ragchenko的proferestion crouts of coint of the and yang-mills the的动机引理。)。

We complete the program, initiated in a 2015 paper of Green, Miller, and Vanhove, of directly constructing the automorphic solution to the string theory $D^6 R^4$ differential equation $(Δ-12)f=-E_{3/2}^2$ for $SL(2,\Z)$. The construction is via a type of Poincaré series, and requires explicitly evaluating a particular double integral. We also show how to use double Dirichlet series to formally derive the predicted vanishing of one type of term appearing in $f$'s Fourier expansion, confirming a conjecture made by Chester, Green, Pufu, Wang, and Wen motivated by Yang-Mills theory (and later proved rigorously by Fedosova, Klinger-Logan, and Radchenko using the Gross-Zagier Holomorphic Projection Lemma.).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源