论文标题

CRC辅助的简短卷积代码和正交信号的RCU界限

CRC-Aided Short Convolutional Codes and RCU Bounds for Orthogonal Signaling

论文作者

King, Jacob, Ryan, William, Wesel, Richard D.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We extend earlier work on the design of convolutional code-specific CRC codes to $Q$-ary alphabets, with an eye toward $Q$-ary orthogonal signaling. Starting with distance-spectrum optimal, zero-terminated, $Q$-ary convolutional codes, we design $Q$-ary CRC codes so that the CRC/convolutional concatenation is distance-spectrum optimal. The $Q$-ary code symbols are mapped to a $Q$-ary orthogonal signal set and sent over an AWGN channel with noncoherent reception. We focus on $Q = 4$, rate-1/2 convolutional codes in our designs. The random coding union bound and normal approximation are used in earlier works as benchmarks for performance for distance-spectrum optimal convolutional codes. We derive a saddlepoint approximation of the random coding union bound for the coded noncoherent signaling channel, as well as a normal approximation for this channel, and compare the performance of our codes to these limits. Our best design is within $0.6$ dB of the RCU bound at a frame error rate of $10^{-4}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源