论文标题
连接的楔形定理及其后果
The connected wedge theorem and its consequences
论文作者
论文摘要
在AD/CFT对应关系中,批量因果结构对边界纠缠有后果。在量子信息科学中,为了信息处理目的,可以通过分布式纠缠来代替因果结构。在这项工作中,我们通过许多新的结果加深了对这两种陈述及其关系的理解。中央,我们介绍并证明了一个新定理,即$ n $ to- $ n $连接的楔形定理,该定理考虑$ n $输入和$ n $输出位置在AD/CFT所描述的渐近ads $ _ {2+1} $ spactime的边界处。当这些点之间存在足够牢固的因果关系时,边界中的一组相关区域将在各个地区的任何两者中都具有广泛的In-N共同信息。该证明具有三个大容量的尺寸,用于满足无效曲率条件的经典空间,并且对于满足标准猜想的半经典空间。 $ n $ - 至$ n $连接的楔形定理给出了一个精确的示例,说明了其批量状态下的因果关系如何从其边界双重二元的大N纠缠特征中出现。它还对量子信息理论产生后果:它揭示了一种纠缠模式,足以在特定类别的因果网络中进行信息处理。我们认为这种模式也是必要的,并在此设置中提供了用于信息处理的广告/CFT启发协议。 我们的定理概括了$ 2 $ -TO- $ 2 $连接的楔形定理在Arxiv:1912.05649中证明。我们还纠正了那里提供的证明中的一些错误,特别是一个错误的说法,即现有证明技术在三个批量维度上都起作用。
In the AdS/CFT correspondence, bulk causal structure has consequences for boundary entanglement. In quantum information science, causal structures can be replaced by distributed entanglement for the purposes of information processing. In this work, we deepen the understanding of both of these statements, and their relationship, with a number of new results. Centrally, we present and prove a new theorem, the $n$-to-$n$ connected wedge theorem, which considers $n$ input and $n$ output locations at the boundary of an asymptotically AdS$_{2+1}$ spacetime described by AdS/CFT. When a sufficiently strong set of causal connections exists among these points in the bulk, a set of $n$ associated regions in the boundary will have extensive-in-N mutual information across any bipartition of the regions. The proof holds in three bulk dimensions for classical spacetimes satisfying the null curvature condition and for semiclassical spacetimes satisfying standard conjectures. The $n$-to-$n$ connected wedge theorem gives a precise example of how causal connections in a bulk state can emerge from large-N entanglement features of its boundary dual. It also has consequences for quantum information theory: it reveals one pattern of entanglement which is sufficient for information processing in a particular class of causal networks. We argue this pattern is also necessary, and give an AdS/CFT inspired protocol for information processing in this setting. Our theorem generalizes the $2$-to-$2$ connected wedge theorem proven in arXiv:1912.05649. We also correct some errors in the proof presented there, in particular a false claim that existing proof techniques work above three bulk dimensions.