论文标题

在基于SOC的控制系统中的数字通信的设计和分析用于捕获离子量子计算

Design and analysis of digital communication within an SoC-based control system for trapped-ion quantum computing

论文作者

Irtija, Nafis, Plusquellic, Jim, Tsiropoulou, Eirini Eleni, Goldberg, Joshua, Lobser, Daniel, Stick, Daniel

论文摘要

随着多个量子技术采用较大数量的具有较高保真度目标的Qubit,用于量子计算的电子控制系统已经变得越来越复杂。而不同技术的控制系统具有一些相似之处,例如脉冲持续时间,吞吐量,实时反馈和延迟需求,取决于Qubit类型的差异很大。在本文中,我们评估了现代芯片(SOC)体系结构的性能,以满足与在陷阱离子量子器上执行量子门相关的控制需求,尤其是专注于SOC内的交流。本文的主要重点是数据传输延迟和Xilinx多处理器上的几种高速芯片机制的吞吐率,包括利用直接内存访问(DMA)的数据传输延迟。测量和评估它们以确定重新配置门参数所需的时间上的上限。将自定义栅极序列核心的最差案例和平均案例带宽要求与实验结果进行了比较。最低的变量性,最高的数据传输机制是实时处理单元(RPU)和PL之间的DMA,其中可能的带宽最高为19.2 GB/s。对于上下文,这可以使Qubit门的重新配置在不到2 $ $ $的情况下,与最快的门时间相当。尽管本文着重于捕获的离子控制系统,但栅极抽象方案和测量的通信速率适用于广泛的量子计算技术。

Electronic control systems used for quantum computing have become increasingly complex as multiple qubit technologies employ larger numbers of qubits with higher fidelity targets. Whereas the control systems for different technologies share some similarities, parameters like pulse duration, throughput, real-time feedback, and latency requirements vary widely depending on the qubit type. In this paper, we evaluate the performance of modern System-on-Chip (SoC) architectures in meeting the control demands associated with performing quantum gates on trapped-ion qubits, particularly focusing on communication within the SoC. A principal focus of this paper is the data transfer latency and throughput of several high-speed on-chip mechanisms on Xilinx multi-processor SoCs, including those that utilize direct memory access (DMA). They are measured and evaluated to determine an upper bound on the time required to reconfigure a gate parameter. Worst-case and average-case bandwidth requirements for a custom gate sequencer core are compared with the experimental results. The lowest-variability, highest-throughput data-transfer mechanism is DMA between the real-time processing unit (RPU) and the PL, where bandwidths up to 19.2 GB/s are possible. For context, this enables reconfiguration of qubit gates in less than 2$μ$s, comparable to the fastest gate time. Though this paper focuses on trapped-ion control systems, the gate abstraction scheme and measured communication rates are applicable to a broad range of quantum computing technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源