论文标题

可行的神经表示:最小约束的网格单元

Actionable Neural Representations: Grid Cells from Minimal Constraints

论文作者

Dorrell, William, Latham, Peter E., Behrens, Timothy E. J., Whittington, James C. R.

论文摘要

为了获得灵活的行为,大脑必须建立内部表示,以反映外部世界中变量的结构。例如,2D空间遵守规则:相同的一组动作以相同的方式组合起来(步骤北,然后向南,无论您从何处开始)。我们建议大脑必须代表跨空间的行动的这种一致含义,因为它使您可以找到新的捷径并在不熟悉的设置中导航。我们将此表示为“可行的表示”。我们使用小组和表示理论制定了可操作的表示,并表明,当与生物学和功能约束结合使用时 - 非负射击,有界的神经活动和精确的编码 - 六边形网格细胞的多个模块是2D空间的最佳表示。我们通过直觉,分析辩护和模拟来支持这一主张。我们的分析结果规范地解释了一组令人惊讶的网格细胞现象,并为将来的实验做出了可测试的预测。最后,我们不仅要了解2D空间,从而强调了我们方法的一般性。我们的工作是理解和设计灵活的内部表示形式的新原则:它们应该是可行的,允许动物和机器预测其行为的后果,而不仅仅是编码。

To afford flexible behaviour, the brain must build internal representations that mirror the structure of variables in the external world. For example, 2D space obeys rules: the same set of actions combine in the same way everywhere (step north, then south, and you won't have moved, wherever you start). We suggest the brain must represent this consistent meaning of actions across space, as it allows you to find new short-cuts and navigate in unfamiliar settings. We term this representation an `actionable representation'. We formulate actionable representations using group and representation theory, and show that, when combined with biological and functional constraints - non-negative firing, bounded neural activity, and precise coding - multiple modules of hexagonal grid cells are the optimal representation of 2D space. We support this claim with intuition, analytic justification, and simulations. Our analytic results normatively explain a set of surprising grid cell phenomena, and make testable predictions for future experiments. Lastly, we highlight the generality of our approach beyond just understanding 2D space. Our work characterises a new principle for understanding and designing flexible internal representations: they should be actionable, allowing animals and machines to predict the consequences of their actions, rather than just encode.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源