论文标题
贝叶斯神经网络用于地热资源评估:不确定性的预测
Bayesian Neural Networks for Geothermal Resource Assessment: Prediction with Uncertainty
论文作者
论文摘要
我们考虑将机器学习应用于地热资源潜力的评估。在美国内华达州内部的10个地质和地球物理特征的地图被用来定义广泛地区的地热势。我们提供了相对较小的积极训练站点(已知资源或活跃的电厂)和负训练站点(具有不合适的地热条件的已知钻机),并使用它们来限制和优化该分类任务的人工神经网络。主要目的是在较大的地理区域内预测未知地点的地热资源潜力。这些预测可用于针对有前途的领域以进行进一步的详细研究。我们描述了工作从定义特定神经网络架构到培训和优化试验的演变。通过分析,我们暴露了模型可变性的不可避免的问题和预测的不确定性。最后,为了解决这些问题,我们应用了贝叶斯神经网络的概念,这是一种在网络培训中进行正规化的启发式方法,并利用了他们提供的正式不确定性度量的实际解释。
We consider the application of machine learning to the evaluation of geothermal resource potential. A supervised learning problem is defined where maps of 10 geological and geophysical features within the state of Nevada, USA are used to define geothermal potential across a broad region. We have available a relatively small set of positive training sites (known resources or active power plants) and negative training sites (known drill sites with unsuitable geothermal conditions) and use these to constrain and optimize artificial neural networks for this classification task. The main objective is to predict the geothermal resource potential at unknown sites within a large geographic area where the defining features are known. These predictions could be used to target promising areas for further detailed investigations. We describe the evolution of our work from defining a specific neural network architecture to training and optimization trials. Upon analysis we expose the inevitable problems of model variability and resulting prediction uncertainty. Finally, to address these problems we apply the concept of Bayesian neural networks, a heuristic approach to regularization in network training, and make use of the practical interpretation of the formal uncertainty measures they provide.