论文标题
与碰撞冲击波的非平凡拓扑的被困表面产生
Arising of trapped surfaces with non-trivial topology from colliding shock waves
论文作者
论文摘要
考虑到$ d \ geq4 $尺寸,考虑使用一种角动量的增强黑洞解决方案的轻度极限。升压是平行于角动量执行的,灯光末端是通过扰动膨胀来完成的。我们表明,对于$ d = 4 $和$ d> 5 $,灯光限制在环形奇点内无法扩展。然后,对于$ d = 5 $,我们讨论了正面碰撞中被困的表面的产生。我们发现,在我们进行的扰动分析的有效性中,带有拓扑$ \ Mathbb R \ Times \ Mathbb S_1 \ Times \ Times \ Mathbb S_1 $的表面似乎出现在过去的碰撞下方的光锥中,以下是Kerr Parameter $ a $ a $ a $ a $ a $ a_c $ a_c $ a_c $ a $的关键值$ a_c $。
The lightlike limit of boosted black hole solutions with one angular momentum is considered for $D \geq4$ dimensions. The boost is performed parallel to the angular momentum and the lightlike limit is done by means of perturbative expansions. We shown that for $D=4$ and $D> 5$ the lightlike limit cannot be extended inside the ring singularity. Then, for $D = 5$ we discuss the arising of trapped surfaces in the head-on collision. We find that, inside the validity of the perturbative analysis we do, a trapped surface with topology $\mathbb R \times \mathbb S_1 \times\mathbb S_1$ seems to appear over the past light cone of the collision below a critical value $a_c$ of the Kerr parameter $a$.