论文标题

相对表示启用零射击潜在空间通信

Relative representations enable zero-shot latent space communication

论文作者

Moschella, Luca, Maiorca, Valentino, Fumero, Marco, Norelli, Antonio, Locatello, Francesco, Rodolà, Emanuele

论文摘要

神经网络将位于高维空间中的数据歧管的几何结构嵌入潜在表示中。理想情况下,潜在空间中数据点的分布应仅取决于任务,数据,损失和其他特定于架构的约束。但是,在训练阶段,诸如随机权重初始化,训练超计或其他随机性之类的因素可能会引起不连贯的潜在空间,从而阻碍任何形式的重复使用。然而,我们从经验上观察到,在相同的数据和建模选择下,不同潜在空间内的编码之间的角度不会改变。在这项工作中,我们提出了每个样本与一组固定锚的潜在相似性作为替代数据表示,表明它可以在没有任何额外培训的情况下强制执行所需的不变。我们展示了神经体系结构如何利用这些相对表示形式来确保对潜在的等法和重新缩放的不变性,从而有效地实现了潜在空间通信:从零拍模型缝制到不同设置之间的潜在空间比较。我们广泛验证了在不同数据集上的方法的概括能力,涵盖了各种模式(图像,文本,图形),任务(例如,分类,重建)和体系结构(例如CNNS,GCNS,Transformers,Transformers)。

Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源