论文标题
最高重量的狄拉克不平等
Dirac inequality for highest weight Harish-Chandra modules I
论文作者
论文摘要
让$ g $成为一个连接的简单连接的非策略的经典简单谎言组的Hermitian类型。然后,$ g $具有统一的最高权重表示。 Enright,Howe和Wallach对$ G $的统一最高权重表示的分类证明是基于Parthasarathy,Jantzen的公式和Howe的双对理论的狄拉克不平等的,其中一对一组是紧凑的。在本文中,我们专注于狄拉克不平等,可用于以更直接的方式证明分类。
Let $G$ be a connected simply connected noncompact classical simple Lie group of Hermitian type. Then $G$ has unitary highest weight representations. The proof of the classification of unitary highest weight representations of $G$ given by Enright, Howe and Wallach is based on the Dirac inequality of Parthasarathy, Jantzen's formula and Howe's theory of dual pairs where one group in the pair is compact. In this paper we focus on the Dirac inequality which can be used to prove the classification in a more direct way.