论文标题

来自机器学习力场分子动力学的碳化钛mxene的拉曼光谱

Raman Spectra of Titanium Carbide MXene from Machine-Learning Force Field Molecular Dynamics

论文作者

Berger, Ethan, Lv, Zhong-Peng, Komsa, Hannu-Pekka

论文摘要

MXENES是最大的2D材料类之一,在许多领域中具有有希望的应用及其特性,可以通过表面组组成来调整。拉曼光谱学有望产生有关表面组成的丰富信息,但是对测得光谱的解释已被证明具有挑战性。该解释通常是通过与模拟光谱进行比较进行的,但是实验和早期模拟光谱之间存在很大的差异。在这项工作中,我们开发了一种计算方法,以模拟复杂材料的拉曼光谱,该材料结合了机器学习力场分子动力学和通过对原始系统模式的投影对拉曼张量的重建。该方法可以解释有限温度,混合表面和混乱的影响。我们采用我们的方法来模拟碳化钛Mxene的拉曼光谱,并表明必须包括所有这些效果,以正确地重现实验光谱,特别是广泛的特征。我们讨论了峰的起源以及它们如何通过表面组成进化,然后可以用来解释实验结果。

MXenes represent one of the largest class of 2D materials with promising applications in many fields and their properties tunable by the surface group composition. Raman spectroscopy is expected to yield rich information about the surface composition, but the interpretation of measured spectra has proven challenging. The interpretation is usually done via comparison to simulated spectra, but there are large discrepancies between the experimental and earlier simulated spectra. In this work, we develop a computational approach to simulate Raman spectra of complex materials that combines machine-learning force-field molecular dynamics and reconstruction of Raman tensors via projection to pristine system modes. The approach can account for the effects of finite temperature, mixed surfaces, and disorder. We apply our approach to simulate Raman spectra of titanium carbide MXene and show that all these effects must be included in order to properly reproduce the experimental spectra, in particular the broad features. We discuss the origin of the peaks and how they evolve with surface composition, which can then be used to interpret experimental results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源