论文标题
后验风险分类和比例制定,在专家混合物模型中随机效应
A Posteriori Risk Classification and Ratemaking with Random Effects in the Mixture-of-Experts Model
论文作者
论文摘要
一个精心设计的汽车保险风险分类和比例制定的框架是保险公司盈利能力和风险管理的关键,同时还确保根据其风险概况向保单持有人收取合理的溢价。在本文中,我们建议将一种称为混合LRMOE的灵活回归模型适应后验风险分类和比例制定的问题,在这种问题中,保单持有人级的随机效应被纳入,以更好地推断其风险概况由索赔记录反映出。我们还开发了一种随机变异期望结构最大化算法,用于估计模型参数并推断随机效应的后验分布,这在数值上有效且可扩展到大型保险组合。然后,我们将混合LRMOE模型应用于真实的多年汽车保险数据集,该数据集证明该框架可提供更适合数据并产生后溢价,并准确反映了保单持有人的索赔历史记录。
A well-designed framework for risk classification and ratemaking in automobile insurance is key to insurers' profitability and risk management, while also ensuring that policyholders are charged a fair premium according to their risk profile. In this paper, we propose to adapt a flexible regression model, called the Mixed LRMoE, to the problem of a posteriori risk classification and ratemaking, where policyholder-level random effects are incorporated to better infer their risk profile reflected by the claim history. We also develop a stochastic variational Expectation-Conditional-Maximization algorithm for estimating model parameters and inferring the posterior distribution of random effects, which is numerically efficient and scalable to large insurance portfolios. We then apply the Mixed LRMoE model to a real, multiyear automobile insurance dataset, where the proposed framework is shown to offer better fit to data and produce posterior premium which accurately reflects policyholders' claim history.