论文标题

复杂的摩尔比的Gerby变形和同源镜子对称性

A gerby deformation of complex tori and the homological mirror symmetry

论文作者

Kobayashi, Kazushi

论文摘要

令$(x,\ check {x})$为一对复杂的圆环$ x $及其镜子伙伴$ \ check {x} $。这对镜对被描述为琐碎的特殊拉格朗日圆环纤维$ x \ rightarrow b $和$ \ check {x} \ rightarrow b $在同一基本空间$ b $的Syz Construction上。然后,我们可以将lagrangian $ s $ s $ s $ s $ s $ s $ s $ \ \ check {x} \ check {x} \ rightarrow b $ rightarrow b $ rightarrow b $ and rimation local Systems $ MATHAM $ MATHAL的$ s $ S $ e(S,\ Mathcal {l})\ rymorphic line Bundle $ e(S,\ Mathcal {l})\将在本文中,我们首先通过某个平坦的Gerbe $ \ Mathcal {Gerbe $ \ Mathcal {g} $及其镜像伙伴$ \ check {x} _ {\ Mathcal {g Mathcal {g}} $(x,x,x,x,x,x,x,x,x,cecks),&condect) $ e(s,\ mathcal {l})$和$(s,\ mathcal {l})$上的变形镜对$ $(x _ {\ mathcal {g}}},\ check {x} _ {x} _ {\ mathcal {g}})$。

Let $(X,\check{X})$ be a mirror pair of a complex torus $X$ and its mirror partner $\check{X}$. This mirror pair is described as the trivial special Lagrangian torus fibrations $X\rightarrow B$ and $\check{X}\rightarrow B$ on the same base space $B$ by SYZ construction. Then, we can associate a holomorphic line bundle $E(s,\mathcal{L})\rightarrow X$ to a pair $(s,\mathcal{L})$ of a Lagrangian section $s$ of $\check{X}\rightarrow B$ and a unitary local system $\mathcal{L}$ along it. In this paper, we first construct the deformation $X_{\mathcal{G}}$ of $X$ by a certain flat gerbe $\mathcal{G}$ and its mirror partner $\check{X}_{\mathcal{G}}$ from the mirror pair $(X,\check{X})$, and discuss deformations of objects $E(s,\mathcal{L})$ and $(s,\mathcal{L})$ over the deformed mirror pair $(X_{\mathcal{G}},\check{X}_{\mathcal{G}})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源