论文标题
在稳定状态下的大型,分段的空间望远镜上的模拟冠状仪器的自适应光学性能
Adaptive optics performance of a simulated coronagraph instrument on a large, segmented space telescope in steady state
论文作者
论文摘要
直接将带有冠状器仪器在空间望远镜上的coronagraph仪器的直接成像地球样系外星球(````exoearths'')需要一个稳定的波前,在几个小时的暴露时间内,光路差仅限于几十个皮术RMS。虽然可以用望远镜计量学直接稳定分段镜的结构动力学,但另一种可能性是在科隆仪器中使用闭环波前传感和控制系统,该仪器在科学曝光期间运行以积极纠正波浪并放松望远镜稳定性的约束。在本文中,我们介绍了使用luvoir-a的示例(15〜M分段望远镜概念)提供的时间过滤的模拟。假设基于望远镜结构的有限元模型进行稳态畸变,我们(1)〜优化系统以最大程度地减少波浪偏度残差,(2)〜使用端到端的数值传播模型,以估计检测器上的残留星光强度,并(3)〜预测eareArth Cantivate cantecivate the Mission的数量。我们表明,望远镜的动态误差为100〜pm〜rms可以减少到30〜pm〜rms,并以0级级别的幅度降低到30〜rms,将对比度的性能提高了15倍。在使用自然导向星的系统中,振动频率太快了,使用自然导向星,激光源可以增加波段频率的频率,以增加频率的频率频率,较高的频率较高的频率较高。例如,有效幅度为-4的外部激光器使从望远镜的波前降低了100〜PM〜RMS动态误差的望远镜和强烈的振动,以稳定在10〜PM〜RMS的残留误差中,从而将检测到的行星的数量增加至少4。
Directly imaging Earth-like exoplanets (``exoEarths'') with a coronagraph instrument on a space telescope requires a stable wavefront with optical path differences limited to tens of picometers RMS during exposure times of a few hours. While the structural dynamics of a segmented mirror can be directly stabilized with telescope metrology, another possibility is to use a closed-loop wavefront sensing and control system in the coronagraph instrument that operates during the science exposures to actively correct the wavefront and relax the constraints on the stability of the telescope. In this paper, we present simulations of the temporal filtering provided using the example of LUVOIR-A, a 15~m segmented telescope concept. Assuming steady-state aberrations based on a finite element model of the telescope structure, we (1)~optimize the system to minimize the wavefront residuals, (2)~ use an end-to-end numerical propagation model to estimate the residual starlight intensity at the science detector, and (3)~predict the number of exoEarth candidates detected during the mission. We show that telescope dynamic errors of 100~pm~RMS can be reduced down to 30~pm~RMS with a magnitude 0 star, improving the contrast performance by a factor of 15. In scenarios where vibration frequencies are too fast for a system that uses natural guide stars, laser sources can increase the flux at the wavefront sensor to increase the servo-loop frequency and mitigate the high temporal frequency wavefront errors. For example, an external laser with an effective magnitude of -4 allows the wavefront from a telescope with 100~pm~RMS dynamic errors and strong vibrations as fast as 16~Hz to be stabilized with residual errors of 10~pm~RMS thereby increasing the number of detected planets by at least a factor of 4.