论文标题
三角形,分形和意大利面条
Triangles, Fractales and Spaghetti
论文作者
论文摘要
几何概率存在众所周知的问题,可以引用损坏的意大利面问题。它解决了以下问题:一根意大利面条分为三个部分,并且所有点的所有点都具有相同的可能性。三个棍子组合,形成三角形的概率是多少? 在这些注释中,我们描述了此问题的对称版本背后的隐藏几何模式,即一个分形,它参数该问题的样本空间。使用该分形,我们解决了有关获得$δ$平衡三角形的可能性的问题。
There is well-known problem of geometric probability which can be quote as the Broken Spaghetti Problem. It addresses the following question: A stick of spaghetti breaks into three parts and all points of the stick have the same probability to be a breaking point. What is the probability that the three sticks, putting together, form a triangle? In these notes, we describe a hidden geometric pattern behind the symmetric version of this problem, namely a fractal that parametrizes the sample space of this problem. Using that fractal, we address the question about the probability to obtain a $δ$-equilateral triangle.