论文标题
EIHI NET:分布外的概括范式
EiHi Net: Out-of-Distribution Generalization Paradigm
论文作者
论文摘要
本文开发了一个新的EIHI网,以解决深度学习中的分布(OOD)概括问题。 EIHI网是一个模型学习范式,可以在任何视觉主链上得到祝福。该范式可以改变深层模型的先前学习方法,即发现电感样品特征与相应类别之间的相关性,这遭受了优柔寡断特征和标签之间的伪相关性。我们通过明确和动态地建立原始的 - 正 - 负样本对作为最小学习元素来融合SIMCLR和VIC -REG,深层模型在特征和标签之间建立了接近因果关系的关系,同时抑制了伪相关性。为了进一步验证所提出的模型并加强了既定的因果关系,我们制定了一个人类的策略,几乎没有指导样本,以直接修剪代表空间。最后,可以证明,与当前的SOTA结果相比,开发的EIHI NET在最困难和最典型的OOD数据集NICO方面取得了重大改进,没有任何域(例如$ $ background,Background,无关紧要的功能)信息。
This paper develops a new EiHi net to solve the out-of-distribution (OoD) generalization problem in deep learning. EiHi net is a model learning paradigm that can be blessed on any visual backbone. This paradigm can change the previous learning method of the deep model, namely find out correlations between inductive sample features and corresponding categories, which suffers from pseudo correlations between indecisive features and labels. We fuse SimCLR and VIC-Reg via explicitly and dynamically establishing the original - positive - negative sample pair as a minimal learning element, the deep model iteratively establishes a relationship close to the causal one between features and labels, while suppressing pseudo correlations. To further validate the proposed model, and strengthen the established causal relationships, we develop a human-in-the-loop strategy, with few guidance samples, to prune the representation space directly. Finally, it is shown that the developed EiHi net makes significant improvements in the most difficult and typical OoD dataset Nico, compared with the current SOTA results, without any domain ($e.g.$ background, irrelevant features) information.