论文标题

使用相似性缩放探索Maglif内爆的参数空间。 iii。上升时间缩放

Exploring the parameter space of MagLIF implosions using similarity scaling. III. Rise-time scaling

论文作者

Ruiz, D. E., Schmit, P. F., Weis, M. R., Peterson, K. J., Matzen, M. K.

论文摘要

磁化衬里惯性融合(MAGLIF)是在桑迪亚国家实验室(Sandia National Laboratories)上研究的Z磁铁惯性融合(MIF)概念。峰值电流和电流时间大约是达到峰值电流的时间间隔,这两个重要的指标是峰值电流和电流时间。众所周知,当以较长的电流时间驾驶z钉负载时,z钉的性能会降低。但是,仍然缺乏理解和量化这种效果的理论。在本文中,我们利用一个基于相似性缩放的框架来分析研究在改变当前阶段时间或等效的内爆时间尺度时,MAGLIF负载的性能变化。为了保持内爆之间的相似性,我们提供定义MAGLIF负载的实验输入参数的缩放处方,并为停滞条件和各种性能指标得出缩放定律。我们使用辐射,磁动力密码Hydra将理论的预测与2D数值模拟进行了比较。对于几个指标,我们发现该理论和模拟之间可接受的一致性。我们的结果表明,在MAGLIF负载附近的电压遵循较弱的缩放定律$ \ smash {φ_ {\ rm load} \ proptot_φ^{ - 0.12}} $相对于特征时量表$t_φ$的电压来源,而不是理想的$ \ smash proct t_φ^{ - 1}} $缩放。之所以发生这种情况,是因为Maglif负载的爆炸高度必须增加以保留最终损失。由于较长的衬里衬里,所需的总激光预热能并增加电能。总体而言,这项研究可能有助于了解Maglif设计空间的权衡,因为考虑了未来的脉冲功率发电机,具有较短且较长的当前阶段时间。

Magnetized Liner Inertial Fusion (MagLIF) is a z-pinch magneto-inertial-fusion (MIF) concept studied on the Z Machine at Sandia National Laboratories. Two important metrics characterizing current delivery to a z-pinch load are the peak current and the current-rise time, which is roughly the time interval to reach peak current. It is known that, when driving a z-pinch load with a longer current-rise time, the performance of the z-pinch decreases. However, a theory to understand and quantify this effect is still lacking. In this paper, we utilize a framework based on similarity scaling to analytically investigate the variations in performance of MagLIF loads when varying the current-rise time, or equivalently, the implosion timescale. To maintain similarity between the implosions, we provide the scaling prescriptions of the experimental input parameters defining a MagLIF load and derive the scaling laws for the stagnation conditions and for various performance metrics. We compare predictions of the theory to 2D numerical simulations using the radiation, magneto-hydrodynamic code HYDRA. For several metrics, we find acceptable agreement between the theory and simulations. Our results show that the voltage near the MagLIF load follows a weak scaling law $\smash{φ_{\rm load} \propto t_φ^{-0.12}}$ with respect to the characteristic timescale $t_φ$ of the voltage source, instead of the ideal $\smash{φ_{\rm load} \propto t_φ^{-1}}$ scaling. This occurs because the imploding height of the MagLIF load must increase to preserve end losses. As a consequence of the longer imploding liners, the required total laser preheat energy and delivered electric energy increase. Overall, this study may help understand the trade-offs of the MagLIF design space when considering future pulsed-power generators with shorter and longer current-rise times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源