论文标题

在Diophantaine方程式上

On the diophantaine equations $J_N +J_M =F_A$ & $F_N +F_M =J_A$

论文作者

Tarek, Seif, Gaber, Ahmed, Anwar, M.

论文摘要

令$ \ left \ lbrace f _ {k} \ right \ rbrace_ {k \ geq0} $为$ f_ {k {k} = f_ {f-1}+f_ {k-2} $ with所有$ n \ geq2 $ with Initals $ f _ f _ fibonacci序列。 f_ {1} = 1 $。令$ \ left \ lbrace j_ {n} \ right \ rbrace_ {n \ geq0} $为$ j_n = 2J_ {n-1}+j_ {n-2} $ jacobsthal序列,用于所有$ n \ geq2 $ aints $ n \ geq2 $ with intirts $ j_0 = 0 $ j_1 = 0 $ j__1 $,$ n \ geq2 $。在本文中,我们找到了两个二磷酸方程式的所有解决方案$ j_n +j_m = f_a $,$ f_n +f_m = j_a $在非阴性整数变量(n,m,a)中,即我们确定所有fibonacci的数字,这些数字是两个jacobsii norks和jacobs的总和。

Let $\left\lbrace F_{k}\right\rbrace_{k\geq0}$ be the Fibonacci sequence defined by $F_{k}=F_{F-1}+F_{k-2}$ for all $ n\geq2$ with initials $F_{0}=0\; F_{1}=1$. Let $\left\lbrace J_{n}\right\rbrace_{n\geq0}$ be the Jacobsthal sequence defined by $J_n=2J_{n-1}+J_{n-2}$ for all $ n\geq2$ with initials $J_0=0$, $J_1=1$. In this paper we find all the solutions of the two Diophantine equations $J_n +J_m =F_a$ ,$F_n +F_m =J_a$ in the non-negative integer variables (n,m,a),i.e we determine all Fibonacci numbers which are sum of two Jacobsthal numbers, and also determine all Jacobsthal numbers which are sum of two Fibonacci numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源