论文标题

斯坦纳削减了主导力

Steiner Cut Dominants

论文作者

Conforti, Michele, Kaibel, Volker

论文摘要

对于无向图G的节点的子集T,T-Steiner切割是切割的δ(S),其中S相交T t和T的补体。G的T-Steiner cut thus of Gr the g是主要切割的_+(g,t),c is t the is t the is t-steiner cuts的convex hull hull hull hull hull cuts fors t tht-Steiner cuit ferm c} ferm t = 主导的。选择t作为G的所有节点的集合,我们获得了\ emph {cut占主导地位},为此,原始变量空间中的外部描述仍然不清楚。我们证明,对于每个整数τ,都有一组有限的不等式,因此,对于| t | \ <=τ的每对(g,t),非平凡的刻度定义不等式的cut _+(g,t)是可以通过该设置的两个简单操作的迭代应用来获得的不平等现象。特别是,在cut _+(g,t)描述中通过积分不等式描述的系数和右侧的绝对值可以通过上面的函数| t |的函数来界定。所有| T | <= 5我们通过定义不等式的方面提供切割_+(g,t)的描述,扩展了S-T-CUT优势的已知描述。

For a subset T of nodes of an undirected graph G, a T-Steiner cut is a cut δ(S) where S intersects both T and the complement of T. The T-Steiner cut dominant} of G is the dominant CUT_+(G,T) of the convex hull of the incidence vectors of the T-Steiner cuts of G. For T={s,t}, this is the well-understood s-t-cut dominant. Choosing T as the set of all nodes of G, we obtain the \emph{cut dominant}, for which an outer description in the space of the original variables is still not known. We prove that, for each integer τ, there is a finite set of inequalities such that for every pair (G,T) with |T|\ <= τthe non-trivial facet-defining inequalities of CUT_+(G,T) are the inequalities that can be obtained via iterated applications of two simple operations, starting from that set. In particular, the absolute values of the coefficients and of the right-hand-sides in a description of CUT_+(G,T) by integral inequalities can be bounded from above by a function of |T|. For all |T| <= 5 we provide descriptions of CUT_+(G,T) by facet defining inequalities, extending the known descriptions of s-t-cut dominants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源