论文标题

优化任意Schrödinger猫状态

Optimizing for an arbitrary Schrödinger cat state

论文作者

Krauss, Matthias G., Koch, Christiane P., Reich, Daniel M.

论文摘要

我们得出了一组功能,以优化任意的猫状态,并通过使用两光子驾驶优化Kerr-Nonlinear Hamiltonian的动力学来演示其应用。框架的多功能性使我们能够将功能调整为优化最大纠缠的猫状态,并将其应用于Jaynes-Cummings模型。我们确定所获得的控制场的策略,并确定量子速度限制是猫州激发的函数。最后,我们将优化功能扩展到打开量子系统动力学,并将其应用于振荡器上衰减的Jaynes-Cummings模型。对于强大的耗散和大型CAT半径,我们发现控制策略的变化与没有耗散的情况相比。我们的结果突出了最佳控制的功能,专门为复杂的物理任务而设计的功能以及用于量子技术中实用应用的量子最佳控制工具箱的多功能性。

We derive a set of functionals for optimization towards an arbitrary cat state and demonstrate their application by optimizing the dynamics of a Kerr-nonlinear Hamiltonian with two-photon driving. The versatility of our framework allows us to adapt our functional towards optimization of maximally entangled cat states, applying it to a Jaynes-Cummings model. We identify the strategy of the obtained control fields and determine the quantum speed limit as a function of the cat state's excitation. Finally, we extend our optimization functionals to open quantum system dynamics and apply it to the Jaynes-Cummings model with decay on the oscillator. For strong dissipation and large cat radii, we find a change in the control strategy compared to the case without dissipation. Our results highlight the power of optimal control with functionals specifically crafted for complex physical tasks and the versatility of the quantum optimal control toolbox for practical applications in the quantum technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源