论文标题

物理信息网络的多模非schrödinger方程的缩放转换

Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks

论文作者

Chuprov, Ivan, Efremenko, Dmitry, Gao, Jiexing, Anisimov, Pavel, Zemlyakov, Viacheslav

论文摘要

单模光纤(SMF)已成为现代通信系统的骨干。但是,他们的吞吐量有望在不久的将来达到其理论限制。多模纤维(MMF)的利用被认为是纠正此容量紧缩的最有前途的解决方案之一。然而,描述MMF中光传播的微分方程比SMF更复杂,这使得基于MMF的系统的数值建模在计算上是要求是在计算上要求且不切实际的现实场景。已知物理知识的神经网络(PINN)在各个领域都超过常规数值方法,并已成功应用于SMFS中的光传播的非线性Schrödinger方程(NLSE)。不过,仍然缺乏一项有关PINN在多模NLSE(MMNLSE)中应用的全面研究。据我们所知,本文是第一个为MMNLSE部署Pinn范式的文章,并证明通过类比与NLSE的Pinns直接实施并不能解决。我们指出了所有阻碍Pinn收敛性的问题,并为零阶分散系数引入了新颖的缩放缩放转换,这使Pinn捕获了所有相关的物理效应。我们的仿真显示了与分裂傅立叶(SSF)方法的良好一致性,并将可实现的传播长度扩展到几百米。所有主要限制也将突出显示。

Single-mode optical fibers (SMFs) have become the backbone of modern communication systems. However, their throughput is expected to reach its theoretical limit in the nearest future. Utilization of multimode fibers (MMFs) is considered as one of the most promising solutions rectifying this capacity crunch. Nevertheless, differential equations describing light propagation in MMFs are a way more sophisticated than those for SMFs, which makes numerical modelling of MMF-based systems computationally demanding and impractical for the most part of realistic scenarios. Physics-informed neural networks (PINNs) are known to outperform conventional numerical approaches in various domains and have been successfully applied to the nonlinear Schrödinger equation (NLSE) describing light propagation in SMFs. A comprehensive study on application of PINN to the multimode NLSE (MMNLSE) is still lacking though. To the best of our knowledge, this paper is the first to deploy the paradigm of PINN for MMNLSE and to demonstrate that a straightforward implementation of PINNs by analogy with NLSE does not work out. We pinpoint all issues hindering PINN convergence and introduce a novel scaling transformation for the zero-order dispersion coefficient that makes PINN capture all relevant physical effects. Our simulations reveal good agreement with the split-step Fourier (SSF) method and extend numerically attainable propagation lengths up to several hundred meters. All major limitations are also highlighted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源