论文标题

带有帧转换和数据驱动的先验深网的球形图像介绍

Spherical Image Inpainting with Frame Transformation and Data-driven Prior Deep Networks

论文作者

Li, Jianfei, Huang, Chaoyan, Chan, Raymond, Feng, Han, Ng, Micheal, Zeng, Tieyong

论文摘要

球形图像处理已被广泛应用于许多重要领域,例如自动驾驶汽车,全球气候建模和医学成像的全向视觉。扩展针对平面图像开发的算法的算法是不平凡的。在这项工作中,我们专注于与基于深度学习的正规器插入球形图像的具有挑战性的任务。我们采用了快速的方向球形框架变换,而不是对平面图像的现有模型的幼稚应用,并基于帧转换的稀疏性假设开发了一种新颖的优化框架。此外,通过采用渐进式编码器架构,经过精心设计的新的,表现出色的Deep CNN Denoiser,可以作为隐式正规化程序。最后,我们使用插件方法来处理提出的优化模型,可以通过训练CNN Denoiser先验来有效地实现。进行了数值实验,并表明所提出的算法可以极大地恢复损坏的球形图像,并使用深度学习Denoiser和插件模型实现最佳性能。

Spherical image processing has been widely applied in many important fields, such as omnidirectional vision for autonomous cars, global climate modelling, and medical imaging. It is non-trivial to extend an algorithm developed for flat images to the spherical ones. In this work, we focus on the challenging task of spherical image inpainting with deep learning-based regularizer. Instead of a naive application of existing models for planar images, we employ a fast directional spherical Haar framelet transform and develop a novel optimization framework based on a sparsity assumption of the framelet transform. Furthermore, by employing progressive encoder-decoder architecture, a new and better-performed deep CNN denoiser is carefully designed and works as an implicit regularizer. Finally, we use a plug-and-play method to handle the proposed optimization model, which can be implemented efficiently by training the CNN denoiser prior. Numerical experiments are conducted and show that the proposed algorithms can greatly recover damaged spherical images and achieve the best performance over purely using deep learning denoiser and plug-and-play model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源