论文标题

扩散的对抗代表学习,用于自我监管的船只细分

Diffusion Adversarial Representation Learning for Self-supervised Vessel Segmentation

论文作者

Kim, Boah, Oh, Yujin, Ye, Jong Chul

论文摘要

医学图像中的血管分割是诊断血管疾病和治疗计划的重要任务之一。尽管已经对基于学习的细分方法进行了广泛的研究,但在监督方法中需要大量的基础真实标签,并且令人困惑的背景结构使神经网络很难以无监督的方式分割血管。为了解决这个问题,在这里,我们介绍了一种新型的扩散对抗表示学习(DARL)模型,该模型利用具有对抗性学习的降解扩散概率模型,并将其应用于血管分割。特别是,对于自我监管的血管分割,Darl使用扩散模块学习背景信号,该模块使生成模块有效地提供了血管表示。同样,通过基于提议的可切换在空间自适应的典型规范化的对抗性学习,我们的模型估计了合成的假船只图像以及船舶分割掩码,这进一步使模型捕获了较高的语义信息。一旦训练了提出的模型,该模型就会在一个步骤中生成分割掩码,并可以应用于冠状动脉血管造影和视网膜图像的一般血管结构分割。各种数据集的实验结果表明,我们的方法显着胜过现有的无监督和自我监督的血管分割方法。

Vessel segmentation in medical images is one of the important tasks in the diagnosis of vascular diseases and therapy planning. Although learning-based segmentation approaches have been extensively studied, a large amount of ground-truth labels are required in supervised methods and confusing background structures make neural networks hard to segment vessels in an unsupervised manner. To address this, here we introduce a novel diffusion adversarial representation learning (DARL) model that leverages a denoising diffusion probabilistic model with adversarial learning, and apply it to vessel segmentation. In particular, for self-supervised vessel segmentation, DARL learns the background signal using a diffusion module, which lets a generation module effectively provide vessel representations. Also, by adversarial learning based on the proposed switchable spatially-adaptive denormalization, our model estimates synthetic fake vessel images as well as vessel segmentation masks, which further makes the model capture vessel-relevant semantic information. Once the proposed model is trained, the model generates segmentation masks in a single step and can be applied to general vascular structure segmentation of coronary angiography and retinal images. Experimental results on various datasets show that our method significantly outperforms existing unsupervised and self-supervised vessel segmentation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源