论文标题
几乎是kähler歧管的Vogan图的组合
Combinatorics of Vogan diagrams for almost-Kähler manifolds
论文作者
论文摘要
令$ g $为非紧密的经典半圣经谎言组,让$ g/v $成为$ g $中固定元素的隔离轨道。这些歧管可以配备几乎是kähler结构,我们为$ g/v $在$ g/v $上存在明确的公式,纯粹是在相关的vogan图的组合方面。该公式分别针对Lie代数为$ a _ {\ ell} $,$ b _ {\ ell} $,$ c _ {\ ell} $,$ d _ {\ ell} $,其中$ \ ell $表示LieAlgebra的排名。
Let $G$ be a non-compact classical semisimple Lie group and let $G/V$ be the adjoint orbit with respect to a fixed element in $G$. These manifolds can be equipped with an almost-Kähler structure and we provide explicit formulae for the existence of special almost-complex structures on $G/V$ purely in terms of the combinatorics of the associated Vogan diagram. The formulae are given separately for Lie groups whose Lie algebras are of type $A_{\ell}$, $B_{\ell}$, $C_{\ell}$, $D_{\ell}$, where $\ell$ denotes the rank of the Lie algebra.