论文标题
从惯性运动捕获数据中,用于光学运动捕获驱动的肌肉骨骼建模数据的机器学习
Machine Learning for Optical Motion Capture-driven Musculoskeletal Modelling from Inertial Motion Capture Data
论文作者
论文摘要
基于标记的光运动捕获(OMC)系统和相关的肌肉骨骼(MSK)建模预测提供了对体内关节和肌肉负荷的可侵入性的见解,有助于临床决策。但是,OMC系统基于实验室,昂贵,需要视线。惯性运动捕获(IMC)系统是广泛使用的替代方案,它们具有便携式,用户友好且相对较低的成本,尽管精度较低。无论选择运动捕获技术的选择,都需要使用MSK模型来获取运动学和动力学输出,这是一种计算昂贵的工具,越来越多地通过机器学习(ML)方法近似。在这里,我们提出了一种ML方法,可以将实验记录的IMC数据映射到从(“金标准”)OMC输入数据计算出的人类上限MSK模型输出。从本质上讲,我们旨在从更易于获取的IMC数据中预测更高质量的MSK输出。我们同时使用对同一受试者收集的OMC和IMC数据来训练不同的ML体系结构,以预测IMC测量值的OMC驱动的MSK输出。特别是,我们采用了各种神经网络(NN)架构,例如前馈神经网络(FFNN)和经常性的神经网络(RNNS)(Vanilla,长期短期记忆和封闭式复发单元),并通过在HyperParameters中详尽地搜索主体空间中的最佳搜索模型,并搜索了最佳模型。我们观察到了FFNN和RNN模型的可比性能,这些模型具有很高的一致性(RAVG,SE,FFNN = 0.90 +/- 0.19,RAVG,SE,RNN = 0.89 +/- 0.17,RAVG,SN,SN,FFNN,FFNN = 0.84 +/- 0.23 +/- 0.23&RAVG,SNERIED,SNNN = 0.23)持有测试数据的估计。使用ML模型将IMC输入映射到OMC驱动的MSK输出可能有助于将MSK建模从“实验室到现场”过渡。
Marker-based Optical Motion Capture (OMC) systems and associated musculoskeletal (MSK) modelling predictions offer non-invasively obtainable insights into in vivo joint and muscle loading, aiding clinical decision-making. However, an OMC system is lab-based, expensive, and requires a line of sight. Inertial Motion Capture (IMC) systems are widely-used alternatives, which are portable, user-friendly, and relatively low-cost, although with lesser accuracy. Irrespective of the choice of motion capture technique, one needs to use an MSK model to obtain the kinematic and kinetic outputs, which is a computationally expensive tool increasingly well approximated by machine learning (ML) methods. Here, we present an ML approach to map experimentally recorded IMC data to the human upper-extremity MSK model outputs computed from ('gold standard') OMC input data. Essentially, we aim to predict higher-quality MSK outputs from the much easier-to-obtain IMC data. We use OMC and IMC data simultaneously collected for the same subjects to train different ML architectures that predict OMC-driven MSK outputs from IMC measurements. In particular, we employed various neural network (NN) architectures, such as Feed-Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs) (vanilla, Long Short-Term Memory, and Gated Recurrent Unit) and searched for the best-fit model through an exhaustive search in the hyperparameters space in both subject-exposed (SE) & subject-naive (SN) settings. We observed a comparable performance for both FFNN & RNN models, which have a high degree of agreement (ravg, SE, FFNN = 0.90+/-0.19, ravg, SE, RNN = 0.89+/-0.17, ravg, SN, FFNN = 0.84+/-0.23, & ravg, SN, RNN = 0.78+/-0.23) with the desired OMC-driven MSK estimates for held-out test data. Mapping IMC inputs to OMC-driven MSK outputs using ML models could be instrumental in transitioning MSK modelling from 'lab to field'.