论文标题
来自单轨迹数据的参数识别:从线性到非线性
Parameter identification from single trajectory data: from linear to nonlinear
论文作者
论文摘要
我们最近的工作提出了一个通用框架,用于从从所建模的系统中收集的一组离散数据点来推断微分方程模型的参数和相关动力学信息。严格的数学结果已经证明了这种方法是合理的,并确定了某些类似的集成模型出现的一些共同特征。在这项工作中,我们提出了一项彻底的数值研究,该研究表明,这些核心特征中的一些扩展到范式的线性参数模型,即Lotka-Volterra(LV)系统,我们在保守的情况以及在添加术语的情况下考虑了该系统,这些术语使该系统远离该系统。该分析的中心构造是我们称为$ p_n $ -diagram的数据空间中参数特征的简洁表示,这对于可视化低维(小$ n $)系统的结果特别有用。我们的工作还暴露了与非唯一性有关的一些新属性,这些属性是这些LV系统产生的,而非独立性表现为相关的$ P_2 $ -DIAGRAM中的多层结构。
Our recent work lays out a general framework for inferring information about the parameters and associated dynamics of a differential equation model from a discrete set of data points collected from the system being modeled. Rigorous mathematical results have justified this approach and have identified some common features that arise for certain classes of integrable models. In this work we present a thorough numerical investigation that shows that several of these core features extend to a paradigmatic linear-in-parameters model, the Lotka-Volterra (LV) system, which we consider in the conservative case as well as under the addition of terms that perturb the system away from this regime. A central construct for this analysis is a concise representation of parameter features in the data space that we call the $P_n$-diagram, which is particularly useful for visualization of results for low-dimensional (small $n$) systems. Our work also exposes some new properties related to non-uniqueness that arise for these LV systems, with non-uniqueness manifesting as a multi-layered structure in the associated $P_2$-diagrams.