论文标题
非线性耦合反应扩散竞争模型的分离算法,并进行了库存
Decoupled algorithms for non-linearly coupled reaction-diffusion competition model with harvesting and Stocking
论文作者
论文摘要
我们建议,分析和测试两种新型的完全离散的脱钩线性化算法,以通过收获或库存工作进行非线性耦合反应扩散$ n $ n $ spececies竞争模型。时间步长算法是第一阶和二阶准确的时间和最佳精度。严格证明了脱钩方案的稳定性和最佳收敛定理。我们使用数值实验和合成数据来验证分析和算法的疗效的预测融合率,以解决分析测试问题。我们还研究了收获或库存和扩散参数对物种种群密度进化的影响,并观察到具有最佳收获或库存的共存场景。
We propose, analyze and test two novel fully discrete decoupled linearized algorithms for a nonlinearly coupled reaction-diffusion $N$-species competition model with harvesting or stocking effort. The time-stepping algorithms are first and second order accurate in time and optimally accurate in space. Stability and optimal convergence theorems of the decoupled schemes are proven rigorously. We verify the predicted convergence rates of our analysis and efficacy of the algorithms using numerical experiments and synthetic data for analytical test problems. We also study the effect of harvesting or stocking and diffusion parameters on the evolution of species population density numerically, and observe the co-existence scenario subject to optimal harvesting or stocking.