论文标题
涉及一对与广义分数积分运算符相关的界限相关的一对权重的类别的一些延长
Some extensions of classes involving pair of weights related to the boundedness of multilinear commutators associated to generalized fractional integral operators
论文作者
论文摘要
我们处理了与$ m $ $ m $,$i_α^m $的多线性分数积分运算符有关的高阶换向器的有限属性,从加权Lebesgue空间的产品到适当的加权Lipschitz空间,从而扩展了一些线性案例的估计。我们的研究包括两种不同类型的换向因子和权重的足够条件,以确保上述连续性属性。我们还展示了所涉及的参数的最佳范围。最佳性是从定义相应空间属于某个区域的参数的意义上理解的,是其外部的重量。我们进一步展示了涵盖上述区域的班级体重的例子。
We deal with the boundedness properties of higher order commutators related to some generalizations of the multilinear fractional integral operator of order $m$, $I_α^m$, from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces, extending some previous estimates for the linear case. Our study includes two different types of commutators and sufficient conditions on the weights in order to guarantee the continuity properties described above. We also exhibit the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region, being the weights trivial outside of it. We further show examples of weights for the class which cover the mentioned area.