论文标题

加权对比度哈希

Weighted Contrastive Hashing

论文作者

Yu, Jiaguo, Qiu, Huming, Chen, Dubing, Zhang, Haofeng

论文摘要

最近流行的对比学习范式提出了无监督的哈希的发展。但是,以前的基于学习的作品受到(1)基于仅全球图像表示的数据相似性挖掘的障碍,以及(2)由数据增强引起的哈希代码语义损失。在本文中,我们提出了一种新颖的方法,即加权的对立式散列(WCH),以迈出解决这两个问题的一步。我们介绍了一个新型的相互注意模块,以减轻由缺失的图像结构在结合性增强过程中导致的网络特征中信息不对称的问题。此外,我们探讨了图像之间的细粒语义关系,即,我们将图像分为多个斑块并计算斑块之间的相似性。反映深层图像关系的聚合加权相似性是经过蒸馏而来的,以促进哈希码以蒸馏损失的方式学习,从而获得更好的检索性能。广泛的实验表明,所提出的WCH明显优于三个基准数据集上现有的无监督哈希方法。

The development of unsupervised hashing is advanced by the recent popular contrastive learning paradigm. However, previous contrastive learning-based works have been hampered by (1) insufficient data similarity mining based on global-only image representations, and (2) the hash code semantic loss caused by the data augmentation. In this paper, we propose a novel method, namely Weighted Contrative Hashing (WCH), to take a step towards solving these two problems. We introduce a novel mutual attention module to alleviate the problem of information asymmetry in network features caused by the missing image structure during contrative augmentation. Furthermore, we explore the fine-grained semantic relations between images, i.e., we divide the images into multiple patches and calculate similarities between patches. The aggregated weighted similarities, which reflect the deep image relations, are distilled to facilitate the hash codes learning with a distillation loss, so as to obtain better retrieval performance. Extensive experiments show that the proposed WCH significantly outperforms existing unsupervised hashing methods on three benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源