论文标题
动态单源向上平面图的动态嵌入
Dynamic Embeddings of Dynamic Single-Source Upward Planar Graphs
论文作者
论文摘要
如果承认平面嵌入,则每个边缘为$ y $ - 单子酮,则有向图$ g $是向上的平面。与平面性测试不同,向上平面测试是NP-固定的,除了在受限情况下,例如该图具有单源属性(即每个连接的组件只有一个源)。 在本文中,我们提出了一种动态算法,用于维持单一源向上平面图的组合嵌入$ \ MATHCAL {E}(g)$,对边删除,边缘收缩,边缘收缩,脸部向上插入边缘插入,以及单个弹药的插入,以及通过指定的corners通过指定的拐角处。此外,我们支持对嵌入$ \ MATHCAL {E}(g)$的嵌入方式的更改,该子图翻转形式,该子图翻转的形式是镜像或滑动通过大多数两个顶点连接到图形的子图的位置。 只要图形保持向上平面,就会支持所有更新操作,只要图形保留单源,就会支持所有查询。违反向上平面的更新被标识为,并被我们的更新算法拒绝。我们在$ g $上动态维护线性大小的数据结构,该数据结构支持顶点和脸部之间的发病率查询,以及顶点对的向上链接性。如果一对顶点不可向上链接,我们便促进了可链接的查询,该查询指向一个子图翻转,如果存在这种翻转,则可以将它们链接起来。 我们支持$ O(\ log^2 n)$时间的所有更新和查询。
A directed graph $G$ is upward planar if it admits a planar embedding such that each edge is $y$-monotone. Unlike planarity testing, upward planarity testing is NP-hard except in restricted cases, such as when the graph has the single-source property (i.e. each connected component only has one source). In this paper, we present a dynamic algorithm for maintaining a combinatorial embedding $\mathcal{E}(G)$ of a single-source upward planar graph subject to edge deletions, edge contractions, edge insertions upwards across a face, and single-source-preserving vertex splits through specified corners. We furthermore support changes to the embedding $\mathcal{E}(G)$ on the form of subgraph flips that mirror or slide the placement of a subgraph that is connected to the rest of the graph via at most two vertices. All update operations are supported as long as the graph remains upward planar, and all queries are supported as long as the graph remains single-source. Updates that violate upward planarity are identified as such and rejected by our update algorithm. We dynamically maintain a linear-size data structure on $G$ which supports incidence queries between a vertex and a face, and upward-linkability of vertex pairs. If a pair of vertices are not upwards-linkable, we facilitate one-flip-linkable queries that point to a subgraph flip that makes them linkable, if any such flip exists. We support all updates and queries in $O(\log^2 n)$ time.