论文标题

锥理论的barycenter定理

A cone-theoretic barycenter existence theorem

论文作者

Goubault-Larrecq, Jean, Jia, Xiaodong

论文摘要

我们表明,本地凸出,凸出,清醒的拓扑锥体$ \ mathfrak {c} $上的每个连续估值都有一个Barycenter。这个barycenter是独一无二的,barycenter映射$β$是连续的,因此,是$ \ Mathbf v _ {\ Mathrm W} $ - Algebra的结构图,即Eilenberg-Moore代数,是$ T_0 $ t_0 $ topolotic space ot Todalde $ topolotic space of to eilenberg-moore代数。实际上,它是唯一的$ \ mathbf v _ {\ mathrm w} $ - 代数,它诱导了$ \ mathfrak {c} $上的圆锥结构。

We show that every continuous valuation on a locally convex, locally convex-compact, sober topological cone $\mathfrak{C}$ has a barycenter. This barycenter is unique, and the barycenter map $β$ is continuous, hence is the structure map of a $\mathbf V_{\mathrm w}$-algebra, i.e., an Eilenberg-Moore algebra of the extended valuation monad on the category of $T_0$ topological spaces; it is, in fact, the unique $\mathbf V_{\mathrm w}$-algebra that induces the cone structure on $\mathfrak{C}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源