论文标题

对冠状动脉造影成像分析现代方法的评论

A Review of Modern Approaches for Coronary Angiography Imaging Analysis

论文作者

Popov, Maxim, Aimyshev, Temirgali, Ismailov, Eldar, Bulegenov, Ablay, Fazli, Siamac

论文摘要

冠心病(CHD)是现代世界中死亡的主要原因。用于诊断和治疗CHD的现代分析工具的开发正在从科学界受到极大的关注。基于深度学习的算法,例如分割网络和检测器,通过及时分析患者血管造影,在协助医疗专业人员方面发挥着重要作用。本文着重于X射线冠状动脉造影(XCA),该血管造影(XCA)被认为是CHD诊断和治疗中的“黄金标准”。首先,我们描述了XCA图像的公开可用数据集。然后,回顾了图像预处理的古典和现代技术。此外,讨论了常见的框架选择技术,这是输入质量的重要因素,因此是模型性能。在以下两章中,我们讨论了现代的血管分割和狭窄检测网络,最后是当前最新技术的开放问题和当前局限性。

Coronary Heart Disease (CHD) is a leading cause of death in the modern world. The development of modern analytical tools for diagnostics and treatment of CHD is receiving substantial attention from the scientific community. Deep learning-based algorithms, such as segmentation networks and detectors, play an important role in assisting medical professionals by providing timely analysis of a patient's angiograms. This paper focuses on X-Ray Coronary Angiography (XCA), which is considered to be a "gold standard" in the diagnosis and treatment of CHD. First, we describe publicly available datasets of XCA images. Then, classical and modern techniques of image preprocessing are reviewed. In addition, common frame selection techniques are discussed, which are an important factor of input quality and thus model performance. In the following two chapters we discuss modern vessel segmentation and stenosis detection networks and, finally, open problems and current limitations of the current state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源