论文标题
重新思考模糊合成的深度现实世界图像deblurring
Rethinking Blur Synthesis for Deep Real-World Image Deblurring
论文作者
论文摘要
在本文中,我们研究了现实世界图像脱毛的问题,并考虑了提高深度图像脱蓝色模型性能的两个关键因素,即培训数据综合和网络体系结构设计。经过现有合成数据集训练的脱毛模型在由于域移位引起的真实模糊图像上的表现较差。为了减少合成和真实域之间的域间隙,我们提出了一种新颖的逼真的模糊合成管道,以模拟摄像机成像过程。由于我们提出的合成方法,可以使现有的Deblurring模型更强大以处理现实世界的模糊。此外,我们开发了一个有效的脱蓝色模型,该模型同时捕获特征域中的非本地依赖性和局部上下文。具体来说,我们将多路径变压器模块介绍给UNET架构,以进行丰富的多尺度功能学习。在三个现实世界数据集上进行的全面实验表明,所提出的DeBlurring模型的性能要比最新方法更好。
In this paper, we examine the problem of real-world image deblurring and take into account two key factors for improving the performance of the deep image deblurring model, namely, training data synthesis and network architecture design. Deblurring models trained on existing synthetic datasets perform poorly on real blurry images due to domain shift. To reduce the domain gap between synthetic and real domains, we propose a novel realistic blur synthesis pipeline to simulate the camera imaging process. As a result of our proposed synthesis method, existing deblurring models could be made more robust to handle real-world blur. Furthermore, we develop an effective deblurring model that captures non-local dependencies and local context in the feature domain simultaneously. Specifically, we introduce the multi-path transformer module to UNet architecture for enriched multi-scale features learning. A comprehensive experiment on three real-world datasets shows that the proposed deblurring model performs better than state-of-the-art methods.