论文标题
晶格对准的含氧硝酸盐纳米层用于GAN表面增强和功能延伸
Lattice-aligned gallium oxynitride nanolayer for GaN surface enhancement and function extension
论文作者
论文摘要
作为硅的有前途的替代半导体,氮化岩(GAN)在光电子和电子技术中具有良好的使用。但是,脆弱的gan表面是一个关键的限制,阻碍了基于GAN的设备的开发,尤其是在设备稳定性和可靠性方面。在这里,我们通过将GAN表面转化为氧硝基(GAON)外延纳米层通过原位两步的“氧化 - 脱染配置”过程来克服这一挑战。氧血浆处理克服了GAN表面的化学惰性,顺序的热退火操纵动力学 - 热动力反应途径,创建具有Wurtzite lattice的稳定的Gaon Nanolayer。这款源自的Gaon Nanolayer是一种用于表面加固的量身定制的结构,具有多个优点,包括宽带盖,高热力学稳定性和带有GAN底物的大价带偏移。可以进一步利用这些增强的物理特性,以在新场景中启用基于GAN的应用,例如互补的逻辑集成电路,光电化学水分分裂和紫外线光电转换,从而使Gaon成为多功能功能扩展器。
Gallium nitride (GaN), as a promising alternative semiconductor to silicon, is of well-established use in photoelectronic and electronic technology. However, the vulnerable GaN surface has been a critical restriction that hinders the development of GaN-based devices, especially regarding device stability and reliability. Here, we overcome this challenge by converting the GaN surface into a gallium oxynitride (GaON) epitaxial nanolayer through an in-situ two-step "oxidation-reconfiguration" process. The oxygen plasma treatment overcomes the chemical inertness of the GaN surface, and the sequential thermal annealing manipulates the kinetic-thermodynamic reaction pathways to create a metastable GaON nanolayer with wurtzite lattice. This GaN-derived GaON nanolayer is a tailored structure for surface reinforcement and possesses several advantages, including wide bandgap, high thermodynamic stability, and large valence band offset with GaN substrate. These enhanced physical properties can be further leveraged to enable GaN-based applications in new scenarios, such as complementary logic integrated circuits, photoelectrochemical water splitting, and ultraviolet photoelectric conversion, making GaON a versatile functionality extender.