论文标题
部分可观测时空混沌系统的无模型预测
Could quantum gravity slow down neutrinos?
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In addition to its implications for astrophysics, the hunt for GRB neutrinos could also be significant in quantum-gravity research, since they are excellent probes of the microscopic fabric of spacetime. Some previous studies based on IceCube neutrinos had found intriguing preliminary evidence that some of them might be GRB neutrinos with travel times affected by quantum properties of spacetime, with the noticeable feature that quantum spacetime would slow down some of the neutrinos while others would be sped up. Recently the IceCube collaboration revised significantly the estimates of the direction of observation of their neutrinos, and we here investigate how the corrected directional information affects the results of the previous quantum-spacetime-inspired analyses. We find that there is now no evidence for neutrinos sped up by quantum-spacetime properties, whereas the evidence for neutrinos slowed down by quantum spacetime is even stronger than previously found. Our most conservative estimates find a false alarm probability of less than 1% for these "slow neutrinos", providing motivation for future studies on larger data samples.