论文标题

来自HCI出版物的ALT文本的数据集:分析和用途,用于在科学论文中生成更具描述性的数据可视化文本

A Dataset of Alt Texts from HCI Publications: Analyses and Uses Towards Producing More Descriptive Alt Texts of Data Visualizations in Scientific Papers

论文作者

Chintalapati, Sanjana, Bragg, Jonathan, Wang, Lucy Lu

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Figures in scientific publications contain important information and results, and alt text is needed for blind and low vision readers to engage with their content. We conduct a study to characterize the semantic content of alt text in HCI publications based on a framework introduced by Lundgard and Satyanarayan. Our study focuses on alt text for graphs, charts, and plots extracted from HCI and accessibility publications; we focus on these communities due to the lack of alt text in papers published outside of these disciplines. We find that the capacity of author-written alt text to fulfill blind and low vision user needs is mixed; for example, only 50% of alt texts in our sample contain information about extrema or outliers, and only 31% contain information about major trends or comparisons conveyed by the graph. We release our collected dataset of author-written alt text, and outline possible ways that it can be used to develop tools and models to assist future authors in writing better alt text. Based on our findings, we also discuss recommendations that can be acted upon by publishers and authors to encourage inclusion of more types of semantic content in alt text.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源