论文标题
一种用Bernoulli和Coxian-2分布来构建高维Copulas的新方法
A new method to construct high-dimensional copulas with Bernoulli and Coxian-2 distributions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose an approach to construct a new family of generalized Farlie-Gumbel-Morgenstern (GFGM) copulas that naturally scales to high dimensions. A GFGM copula can model moderate positive and negative dependence, cover different types of asymmetries, and admits exact expressions for many quantities of interest such as measures of association or risk measures in actuarial science or quantitative risk management. More importantly, this paper presents a new method to construct high-dimensional copulas based on mixtures of power functions, and may be adapted to more general contexts to construct broader families of copulas. We construct a family of copulas through a stochastic representation based on multivariate Bernoulli distributions and Coxian-2 distributions. This paper will cover the construction of a GFGM copula, study its measures of multivariate association and dependence properties. We explain how to sample random vectors from the new family of copulas in high dimensions. Then, we study the bivariate case in detail and find that our construction leads to an asymmetric modified Huang-Kotz FGM copula. Finally, we study the exchangeable case and provide some insights into the most negative dependence structure within this new class of high-dimensional copulas.