论文标题
重新审视了基于本地语法的编码
Local Grammar-Based Coding Revisited
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In the setting of minimal local grammar-based coding, the input string is represented as a grammar with the minimal output length defined via simple symbol-by-symbol encoding. This paper discusses four contributions to this field. First, we invoke a simple harmonic bound on ranked probabilities, which reminds Zipf's law and simplifies universality proofs for minimal local grammar-based codes. Second, we refine known bounds on the vocabulary size, showing its partial power-law equivalence with mutual information and redundancy. These bounds are relevant for linking Zipf's law with the neural scaling law for large language models. Third, we develop a framework for universal codes with fixed infinite vocabularies, recasting universal coding as matching ranked patterns that are independent of empirical data. Finally, we analyze grammar-based codes with finite vocabularies being empirical rank lists, proving that that such codes are also universal. These results extend foundations of universal grammar-based coding and reaffirm previously stated connections to power laws for human language and language models.