论文标题
部分可观测时空混沌系统的无模型预测
$\mathrm{GL}(n,\mathbb{Z}_p)$-invariant Gaussian measures on the space of $p$-adic polynomials
论文作者
论文摘要
我们证明,如果$ p> d $在空间上有独特的高斯分布(从埃文斯的意义上),则在$ \ mathbb {q} _p [x_1,\ ldots,x_n] _ {(d)} $中,这是在$ \ mathrm {gl}(gl}的动作下,这是不变的,这是不变的。这给出了Kostlan定理的非构造对应物在空间上(分别单位)不变的高斯度量$ \ MATHBB {r} [x_1,\ ldots,x_n] _ {(分别) x_n] _ {(d)} $)。更一般而言,如果$ v $是$ n $ - 二维向量的空间与非架构的本地字段$ k $,带有整数$ r $ $ r $,并且如果$λ$是整数$ d $的分区,我们研究了确定Schur模块$s_λ(V)$ s ocation of the Group $ \ berm $ \ \ \ \ blm $ \ blm的问题。
We prove that if $p>d$ there is a unique gaussian distribution (in the sense of Evans) on the space $\mathbb{Q}_p[x_1, \ldots, x_n]_{(d)}$ which is invariant under the action of $\mathrm{GL}(n, \mathbb{Z}_p)$ by change of variables. This gives the nonarchimedean counterpart of Kostlan's Theorem on the classification of orthogonally (respectively unitarily) invariant gaussian measures on the space $\mathbb{R}[x_1, \ldots, x_n]_{(d)}$ (respectively $\mathbb{C}[x_1, \ldots, x_n]_{(d)}$). More generally, if $V$ is an $n$--dimensional vector space over a nonarchimedean local field $K$ with ring of integers $R$, and if $λ$ is a partition of an integer $d$, we study the problem of determining the invariant lattices in the Schur module $S_λ(V)$ under the action of the group $\mathrm{GL}(n,R)$.