论文标题

实时拦截和障碍物避免使用扩散变异自动编码器的统一控制框架

Unified Control Framework for Real-Time Interception and Obstacle Avoidance of Fast-Moving Objects with Diffusion Variational Autoencoder

论文作者

Dastider, Apan, Fang, Hao, Lin, Mingjie

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Real-time interception of fast-moving objects by robotic arms in dynamic environments poses a formidable challenge due to the need for rapid reaction times, often within milliseconds, amidst dynamic obstacles. This paper introduces a unified control framework to address the above challenge by simultaneously intercepting dynamic objects and avoiding moving obstacles. Central to our approach is using diffusion-based variational autoencoder for motion planning to perform both object interception and obstacle avoidance. We begin by encoding the high-dimensional temporal information from streaming events into a two-dimensional latent manifold, enabling the discrimination between safe and colliding trajectories, culminating in the construction of an offline densely connected trajectory graph. Subsequently, we employ an extended Kalman filter to achieve precise real-time tracking of the moving object. Leveraging a graph-traversing strategy on the established offline dense graph, we generate encoded robotic motor control commands. Finally, we decode these commands to enable real-time motion of robotic motors, ensuring effective obstacle avoidance and high interception accuracy of fast-moving objects. Experimental validation on both computer simulations and autonomous 7-DoF robotic arms demonstrates the efficacy of our proposed framework. Results indicate the capability of the robotic manipulator to navigate around multiple obstacles of varying sizes and shapes while successfully intercepting fast-moving objects thrown from different angles by hand. Complete video demonstrations of our experiments can be found in https://sites.google.com/view/multirobotskill/home.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源