论文标题

Zariski拓扑在二次模块的频谱上

The Zariski topology on the secondary like spectrum of a module

论文作者

Salam, Saif, Al-Zoubi, Khaldoun

论文摘要

让$ r $为具有团结的换向戒指,而$ m $为左$ r $ - 模块。我们将$ m $的二级频谱定义为所有二次subsodules $ k $ $ m $的集合,以便$ ann_r(soc(k))= \ sqrt {ann_r(k)} $,我们用$ spec^l(m)$表示它。在本文中,我们在第二频谱$ spec^s(m)$上引入了$ spec^l(m)$作为子空间拓扑的拓扑,并研究了该拓扑的几个拓扑结构。

Let $R$ be a commutative ring with unity and $M$ be a left $R$-module. We define the secondary-like spectrum of $M$ to be the set of all secondary submodules $K$ of $M$ such that $Ann_R(soc(K))=\sqrt{Ann_R(K)}$, and we denote it by $Spec^L(M)$. In this paper, we introduce a topology on $Spec^L(M)$ having the Zariski topology on the second spectrum $Spec^s(M)$ as a subspace topology, and study several topological structures of this topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源