论文标题
深层跨模式和分辨率图集成,用于通用大脑连通性映射和增强
Deep Cross-Modality and Resolution Graph Integration for Universal Brain Connectivity Mapping and Augmentation
论文作者
论文摘要
连接脑模板(CBT)捕获了给定脑连接组人群的所有个体的共享特征,从而充当指纹。估算从多种神经影像模式(例如功能和结构性)以及在不同的分辨率(即节点数量)中得出大脑图的CBT,这些神经影像学模式(例如功能和结构性)仍然是一个巨大的挑战。这种网络集成任务可以学习各种方式和决议之间大脑连接性的丰富而普遍的表示。所得的CBT可以基本上用于生成全新的多模式脑连接组,从而可以增强学习downstream任务(例如大脑状态分类)的学习。在这里,我们提出了多模式多解决的大脑图积分器网络(即M2GraphIntegrator),这是第一个多模式多模式的多模式图形集成框架,该框架将给定的连接群映射到一个居中的CBT中。 M2GraphIntegrator首先使用分辨率特定的图形自动编码器来统一大脑图分辨率。接下来,它将所得的固定尺寸脑图整合到位于其人群中心的通用CBT中。为了保持人口多样性,我们进一步设计了一种基于聚类的培训样本选择策略,该策略利用最异构的培训样本。为了确保学到的CBT的生物学声音,我们提出了拓扑损失,以最大程度地减少地面真相脑图和学识渊博的CBT之间的拓扑间隙。我们的实验表明,从单个CBT中,可以生成逼真的连接数据集,包括不同的分辨率和模态的大脑图。我们进一步证明,我们的框架在重建质量,增强任务,集中性和拓扑合理性方面显着优于基准。
The connectional brain template (CBT) captures the shared traits across all individuals of a given population of brain connectomes, thereby acting as a fingerprint. Estimating a CBT from a population where brain graphs are derived from diverse neuroimaging modalities (e.g., functional and structural) and at different resolutions (i.e., number of nodes) remains a formidable challenge to solve. Such network integration task allows for learning a rich and universal representation of the brain connectivity across varying modalities and resolutions. The resulting CBT can be substantially used to generate entirely new multimodal brain connectomes, which can boost the learning of the downs-stream tasks such as brain state classification. Here, we propose the Multimodal Multiresolution Brain Graph Integrator Network (i.e., M2GraphIntegrator), the first multimodal multiresolution graph integration framework that maps a given connectomic population into a well centered CBT. M2GraphIntegrator first unifies brain graph resolutions by utilizing resolution-specific graph autoencoders. Next, it integrates the resulting fixed-size brain graphs into a universal CBT lying at the center of its population. To preserve the population diversity, we further design a novel clustering-based training sample selection strategy which leverages the most heterogeneous training samples. To ensure the biological soundness of the learned CBT, we propose a topological loss that minimizes the topological gap between the ground-truth brain graphs and the learned CBT. Our experiments show that from a single CBT, one can generate realistic connectomic datasets including brain graphs of varying resolutions and modalities. We further demonstrate that our framework significantly outperforms benchmarks in reconstruction quality, augmentation task, centeredness and topological soundness.