论文标题
谐波振荡器和MIE型电势的通量场下的Schrödinger颗粒上的点状缺陷:应用于分子电位
Point-like defect on Schrödinger particles under flux field with harmonic oscillator plus Mie-type potential: application to molecular potentials
论文作者
论文摘要
在此分析中,我们研究了由谐波振荡器加上谐波振荡器加上谐波振荡器加上MIE型潜力的非相关粒子的量子运动。我们通过分析确定颗粒的特征值解,并用这种潜力讨论拓扑缺陷和通量场的影响。然后,该特征值溶液在某些双原子分子电势模型(Harmonic振荡器以及Kratzer,改良的Kratzer和有吸引力的库仑电位)中使用,并作为特征值溶液呈现。之后,我们考虑了量子系统中的一般潜在形式(伪harmonic和康奈尔型潜力的叠加),并分析各种因素对特征值解决方案的影响。结果表明,与在平面空间中获得的结果相比
In this analysis, we study the quantum motions of a non-relativistic particle confined by the Aharonov-Bohm (AB) flux field with harmonic oscillator plus Mie-type potential in a point-like defect. We determine the eigenvalue solution of the particles analytically and discuss the effects of the topological defect and flux field with this potential. This eigenvalue solution is then used in some diatomic molecular potential models (harmonic oscillator plus Kratzer, modified Kratzer and attractive Coulomb potentials) and presented as the eigenvalue solutions. Afterwards, we consider a general potential form (superposition of pseudoharmonic plus Cornell-type potential) in the quantum system and analyse the effects of various factors on the eigenvalue solution. It is shown that the eigenvalue solutions are modified by the topological defect of a point-like global monopole and flux field compared to the results obtained in the flat space