论文标题
通过6G无线通信的车辆互联网的移动元分配资源分配:一种深入的强化学习方法
Resource Allocation for Mobile Metaverse with the Internet of Vehicles over 6G Wireless Communications: A Deep Reinforcement Learning Approach
论文作者
论文摘要
改善人之间的互动性和互连性是元视体的亮点之一。荟萃分析依赖于核心方法,数字孪生,这是将物理世界对象,人,动作和场景复制到虚拟世界中的一种手段。能够在实时和移动性的情况下访问与物理世界相关的场景和信息,对于为所有用户开发高度可访问,互动和互连体验至关重要。这种开发使来自其他位置的用户可以访问有关另一个位置发生的事件的高质量现实世界和最新信息,并与他人进行超相互交互的社交。然而,由于虚拟世界图形的数据大小以及对低延迟传输的需求,因此其他人从Metaverse产生的持续,平稳的更新是一项具有挑战性的任务。随着移动增强现实(MAR)的开发,用户也可以通过互动方式通过Metaverse进行交互,即使在移动性下也是如此。因此,在我们的工作中,我们考虑了一个环境,其中包括移动车辆互联网(IOV)的用户,并通过无线通信从Metaverse Service Provister Pasting Stations(MSPCSS)下载实时虚拟世界更新。我们设计了一个具有多个手机站的环境,其中将在细胞站之间交换用户虚拟世界图形下载任务。由于传输延迟是在移动性下接收虚拟世界更新的主要问题,因此我们的工作旨在分配系统资源,以最大程度地减少用户在车辆中使用的总时间,以便从单元站下载其虚拟世界场景。我们利用深厚的加固学习并评估不同环境配置下算法的性能。我们的工作提供了启用AI支持的6G通信的元元用例。
Improving the interactivity and interconnectivity between people is one of the highlights of the Metaverse. The Metaverse relies on a core approach, digital twinning, which is a means to replicate physical world objects, people, actions and scenes onto the virtual world. Being able to access scenes and information associated with the physical world, in the Metaverse in real-time and under mobility, is essential in developing a highly accessible, interactive and interconnective experience for all users. This development allows users from other locations to access high-quality real-world and up-to-date information about events happening in another location, and socialize with others hyper-interactively. Nevertheless, receiving continual, smooth updates generated by others from the Metaverse is a challenging task due to the large data size of the virtual world graphics and the need for low latency transmission. With the development of Mobile Augmented Reality (MAR), users can interact via the Metaverse in a highly interactive manner, even under mobility. Hence in our work, we considered an environment with users in moving Internet of Vehicles (IoV), downloading real-time virtual world updates from Metaverse Service Provider Cell Stations (MSPCSs) via wireless communications. We design an environment with multiple cell stations, where there will be a handover of users' virtual world graphic download tasks between cell stations. As transmission latency is the primary concern in receiving virtual world updates under mobility, our work aims to allocate system resources to minimize the total time taken for users in vehicles to download their virtual world scenes from the cell stations. We utilize deep reinforcement learning and evaluate the performance of the algorithms under different environmental configurations. Our work provides a use case of the Metaverse over AI-enabled 6G communications.