论文标题

使用行动建议做出协作决策

Collaborative Decision Making Using Action Suggestions

论文作者

Asmar, Dylan M., Kochenderfer, Mykel J.

论文摘要

跨越多个域的系统的自主权水平正在提高,但是这些系统仍会经历故障。减轻失败风险的一种方法是整合人类对自主系统的监督,并依靠人类在自治失败时控制人类。在这项工作中,我们通过行动建议制定了一种协作决策的方法,该建议在不控制系统的情况下改善了行动选择。我们的方法是通过建议通过建议共享的隐式信息来有效地利用每种建议,以修改代理商的信念,并以比在建议的行动遵循建议的情况下实现更好的绩效。我们假设协作代理人共享相同的目标,并通过有效的行动进行交流。通过假设建议的行动仅取决于国家,我们可以将建议的行动纳入对环境的独立观察。协作环境的假设使我们能够利用代理商的政策来估计行动建议的分布。我们提出了两种使用建议动作的方法,并通过模拟实验证明了该方法。提出的方法可以提高性能,同时对次优的建议也有鲁棒性。

The level of autonomy is increasing in systems spanning multiple domains, but these systems still experience failures. One way to mitigate the risk of failures is to integrate human oversight of the autonomous systems and rely on the human to take control when the autonomy fails. In this work, we formulate a method of collaborative decision making through action suggestions that improves action selection without taking control of the system. Our approach uses each suggestion efficiently by incorporating the implicit information shared through suggestions to modify the agent's belief and achieves better performance with fewer suggestions than naively following the suggested actions. We assume collaborative agents share the same objective and communicate through valid actions. By assuming the suggested action is dependent only on the state, we can incorporate the suggested action as an independent observation of the environment. The assumption of a collaborative environment enables us to use the agent's policy to estimate the distribution over action suggestions. We propose two methods that use suggested actions and demonstrate the approach through simulated experiments. The proposed methodology results in increased performance while also being robust to suboptimal suggestions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源